2,687 research outputs found

    Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06

    Get PDF
    Large-eddy simulations of a pocket of open cells (POC) based on VOCALS Regional Experiment (REx) NSF C-130 Research Flight 06 are analyzed and compared with aircraft observations. A doubly-periodic domain 192 km × 24 km with 125 m horizontal and 5 m vertical grid spacing near the capping inversion is used. The POC is realized in the model as a fixed 96 km wide region of reduced cloud droplet number concentration (<i>N</i><sub>c</sub>) based on observed values; initialization and forcing are otherwise uniform across the domain. The model reproduces aircraft-observed differences in boundary-layer structure and precipitation organization between a well-mixed overcast region and a decoupled POC with open-cell precipitating cumuli, although the simulated cloud cover is too large in the POC. A sensitivity study in which <i>N</i><sub>c</sub> is allowed to advect following the turbulent flow gives nearly identical results over the 16 h length of the simulation (which starts at night and goes into the next afternoon). <br><br> The simulated entrainment rate is nearly a factor of two smaller in the less turbulent POC than in the more turbulent overcast region. However, the inversion rises at a nearly uniform rate across the domain because powerful buoyancy restoring forces counteract horizontal inversion height gradients. A secondary circulation develops in the model that diverts subsiding free-tropospheric air away from the POC into the surrounding overcast region, counterbalancing the weaker entrainment in the POC with locally weaker subsidence

    Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy

    Full text link
    The conducting interface of LaAlO3_3/SrTiO3_3 heterostructures has been studied by hard X-ray photoelectron spectroscopy. From the Ti~2pp signal and its angle-dependence we derive that the thickness of the electron gas is much smaller than the probing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO3_3 overlayers. Our results point to an electronic reconstruction in the LaAlO3_3 overlayer as the driving mechanism for the conducting interface and corroborate the recent interpretation of the superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless type.Comment: 4 pages, 4 figure

    Direct k-space mapping of the electronic structure in an oxide-oxide interface

    Full text link
    The interface between LaAlO3 and SrTiO3 hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k-space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O-vacancies in the SrTiO3. While photovoltage effects in the polar LaAlO3 layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO3 is compensated by surface O-vacancies serving also as charge reservoir.Comment: 8 pages, 6 figures, incl. Supplemental Informatio

    Erhöhte Trockenstresstoleranz von Kleegras nach reduzierter Bodenbearbeitung

    Get PDF
    Grass-clover leys are an integral part of organic rotations. We performed an experiment with reduced tillage (RT) and conventional tillage (CT) using mouldboard ploughing in a rotation in Frick (Switzerland) on a heavy soil and 1000 mm mean annual precipitation. The grass-clover mixture was sawn in autumn 2005 after uniform seed bed preparation with a rotary hoe in both tillage systems without ploughing. After emergence most of the clover seedlings collapsed in the CT plots due to draught, while they survived in the RT plots. This led to a much higher share of clover in the mixture under RT. Grass-clover yields were 29 and 23% higher in RT than in CT plots in the first and second year of cultivation in 2006 and 2007, respectively. Grass grown in RT plots was higher in nitrogen (N), phosphorous (P), potassium (K) and magnesium (Mg) content than in CT plots; clover contained solely more P in RT plots. Over all grass-clover had better growing conditions in RT compared to CT plots in our experiment, reflecting after-effects of the differentiated tillage schemes applied for the preceding arable crops. It is suggested that reduced tillage has a high potential to improve water stress tolerance of cropping systems

    Raman and fluorescence contributions to resonant inelastic soft x-ray scattering on LaAlO3_3/SrTiO3_3 heterostructures

    Full text link
    We present a detailed study of the Ti 3dd carriers at the interface of LaAlO3_3/SrTiO3_3 heterostructures by high-resolution resonant inelastic soft x-ray scattering (RIXS), with special focus on the roles of overlayer thickness and oxygen vacancies. Our measurements show the existence of interfacial Ti 3dd electrons already below the critical thickness for conductivity and an increase of the total interface charge up to a LaAlO3_3 overlayer thickness of 6 unit cells before it levels out. By comparing stoichiometric and oxygen deficient samples we observe strong Ti 3dd charge carrier doping by oxygen vacancies. The RIXS data combined with photoelectron spectroscopy and transport measurements indicate the simultaneous presence of localized and itinerant charge carriers. However, it is demonstrated that the relative amount of localized and itinerant Ti 3d3d electrons in the ground state cannot be deduced from the relative intensities of the Raman and fluorescence peaks in excitation energy dependent RIXS measurements, in contrast to previous interpretations. Rather, we attribute the observation of either the Raman or the fluorescence signal to the spatial extension of the intermediate state reached in the RIXS excitation process.Comment: 9 pages, 6 figure

    Combinatorics of Open Covers VI: Selectors for Sequences of Dense Sets

    Get PDF
    We consider the following two selection principles for topological spaces: [Principle 1:] { For each sequence of dense subsets, there is a sequence of points from the space, the n-th point coming from the n-th dense set, such that this set of points is dense in the space; [Principle 2:]{ For each sequence of dense subsets, there is a sequence of finite sets, the n-th a subset of the n-th dense set, such that the union of these finite sets is dense in the space. We show that for separable metric space X one of these principles holds for the space C_p(X) of realvalued continuous functions equipped with the pointwise convergence topology if, and only if, a corresponding principle holds for a special family of open covers of X. An example is given to show that these equivalences do not hold in general for Tychonoff spaces. It is further shown that these two principles give characterizations for two popular cardinal numbers, and that these two principles are intimately related to an infinite game that was studied by Berner and Juhasz

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    The impact of biological bedforms on near-bed and subsurface flow: a laboratory evaluated numerical study of flow in the vicinity of pits and mounds

    Get PDF
    The complex surface topography of river substrates controls near-bed hydraulics and drives the exchange of subsurface and surface flow. In rivers, the topographic structures that are studied are usually formed by the flow but, it is known that many animals also create biogenic bedforms, such as pits and mounds. Here, a Large-Eddy Simulation (LES) model of flow over a pit and a mound is evaluated with flume experiments. The model includes actual bedform topography, and the topographic complexity of the surrounding bed surface. Subsurface grains are organized in a body-centered cubic packing arrangement. Model evaluation showed strong agreement between experimental and modelling results for velocity (R2 > 0.8) and good agreement for Reynolds stresses (R2 > 0.7), which is comparable to other similar studies. Simulation of the pit shows that the length of the downwelling region is smaller than the upwelling region and that the velocity magnitude is higher in the downwelling region. Simulation of the mound reveals that the flow is forced into the bed upstream of the mound and re-emerges near the top of the mound. The recirculation zone is limited at the leeside of the mound. With increasing Reynolds number, the depth of the upwelling region at the leeside of the mound increases. The analysis of shear stress indicates that sediments on the upstream edge of the pit and on the downstream face of the mound are relatively unstable. These results demonstrate the effect of biogenic structures on the near-bed flow field, hyporheic exchange, and sediment stability

    Probing the interface of Fe3O4/GaAs thin films by hard x-ray photoelectron spectroscopy

    Full text link
    Magnetite (Fe3O4) thin films on GaAs have been studied with HArd X-ray PhotoElectron Spectroscopy (HAXPES) and low-energy electron diffraction. Films prepared under different growth conditions are compared with respect to stoichiometry, oxidation, and chemical nature. Employing the considerably enhanced probing depth of HAXPES as compared to conventional x-ray photoelectron spectroscopy (XPS) allows us to investigate the chemical state of the film-substrate interfaces. The degree of oxidation and intermixing at the interface are dependent on the applied growth conditions; in particular, we found that metallic Fe, As2O3, and Ga2O3 exist at the interface. These interface phases might be detrimental for spin injection from magnetite into GaAs.Comment: 5 pages, 3 figure
    corecore